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Abstract  

A numerical method for so l v ing  the i s e n t h a l p i c  form o f  the governing 

equations f o r  compressible viscous and i n v i s c i d  f lows was developed. The 

method was based on the concept o f  f l u x  vector s p l i t t i n g  i n  i t s  i m p l i c i t  form. 

The method was tested on several demanding i n v i s c i d  and viscous configura- 

t ions.  Two d i f f e r e n t  forms o f  the i m p l i c i t  operator were invest igated. The 

t ime marching to steady state was accelerated by the implementation of the 

m u l t i g r i d  procedure. I t s  various forms very e f f e c t i v e l y  increased the r a t e  of 

convergence o f  the present scheme. High q u a l i t y  steady s t a t e  r e s u l t s  were 

obtained i n  most o f  the t e s t  cases; these requi red only s h o r t  computational 

t imes due t o  the r e l a t i v e  e f f i c i e n c y  o f  the basic method. 

* 
Associate Professor, Member A I A A  

Research Engineer, Senior Member A I A A  
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I. Introduct ion 

I n  recent  years, considerable research has been performed towards the 

goal o f  computing three-dimensional i n v i s c i d  and viscous transonic f lows about 

r e a l  i s t i c  

numerical 

numerical 

f o r  such 

conf igurat ions.  The complexity o f  these f l o w f i e l d s  makes t h e i r  

p r e d i c t i o n  very demanding i n  terms o f  the c a p a b i l i t i e s  o f  the 

method and the computer used f o r  the ca l cu la t i on .  Numerical methods 

problems must achieve h igh r a t e s  o f  convergence wh i l e  p rov id ing  

r e s u l  ts o f  good qual i ty on reasonably s ized computational gr ids.  Computer 

hardware must have s u f f i c i e n t  memory to perform the ca l cu la t i ons  and be f a s t  

enough to provide reasonable turnaround. 

Many methods f o r  p r e d i c t i n g  the i n v i s c i d  compressible f lows about 

r e a l i s t i c  three-dimensional bodies have been developed. Perhaps the o l d e s t  i s  

the e x p l i c i t  MacCormack [I] scheme da t ing  back to 1972. Next came the 

imp1 i c i t  ( three- factor  ADI) method [2,31 using cen t ra l  d i f f e rence  f o r  the 

s p a t i a l  f l u x  der ivat ives.  The e x p l i c i t ,  mu1 t i s t a g e  Runge-Kutta method w i t h  

cen t ra l  d i f f e rences  f o r  the spat ia l  der ivat ives C43 and mu1 t i g r i d  acce le ra t i on  

C51 fo l lowed and i s  the method used widely around the wor ld today. 

The newest methods are the i m p l i c i t  schemes w i t h  f lux-vector-spl  i t t i n g  

C6-101. References C6-81 used a f u l l  formulat ion o f  the Euler equations. 

References [SI and [lo] used an isenthalp ic  formulat ion which reduces the 

three-dimensional problem t o  a s e t  o f  f ou r  p a r t i a l  d i f f e r e n t i a l  equations. 

The energy equation was replaced by an a lgebra ic  expression. 

The present e f f o r t  continues the work by von Lavante and uses the 

i sen tha l  p i c  assumption i n  two-dimensions. With the governing equations 

reduced to three r - r t i a l  d i f f e r e n t i a l  equations, i t  i s  necessary t o  only solve 

3x3 matr ices i n  I re block t r id iagonal  system of equations. This requ i res  
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about h a l f  as much work as so lv ing the 4x4 block t r i d iagona l  systems i f  the 

i s e n t h a l p i c  assumption was n o t  made (9 versus 16 elements). 

Jameson has pointed o u t  the importance o f  conserving t o t a l  enthalpy when 

s o l v i n g  the Euler equations (Ref. Lll]). I n  h i s  work, care must be taken to 

ensure i t s  conservation. I n  the present method, w i t h  the i s e n t h a l p i c  

assumption, the conservation o f  t o t a l  enthalpy i s  assured, a p r i o r i .  

The i sen tha lp i c  assumption i s  not wi thout  i t s  drawbacks. F i r s t  o f  a l l  , 
i t  i s  l i m i t e d  t o  steady s ta te  ca lcu lat ions since the substant ia l  de r i va t i ves  

o f  the t o t a l  enthalpy and pressure are re la ted.  However, i f  the pressure i s  

' s l o w l y '  varying, the i s e n t h a l p i c  equations may be used. Second, f o r  viscous 

ca l cu la t i ons ,  the maximum freestream Mach number i s  l i m i t e d  t o  t ransonic and 

moderate supersonic values due t o  the requirement o f  no heat sources or  

sinks. F i n a l l y ,  viscous r e s u l t s  can be only considered approximate, since i n  

r e a l  f l ows  the total enthalpy changes w i t h i n  the boundary layer .  

Notwithstanding these 1 imi ta t ions,  the present scheme worked we l l  and produced 

good q u a l i t y  r e s u l t s  i n  cases where the f low f s  s t e a a  o r  s lowly varying. 

11. The Eauation of Motion 
~ 

As noted previously, there i s  a large c lass o f  problems where only steady 

s t a t e  so lu t i ons  are o f  i n te res t .  For i n v i s c i d  flows, the assumptions o f  

steady state f low reduces the energy equation t o  the simple statement t h a t  i n  

the absence of heat sources and sinks the total enthalpy w i l l  remain constant. 

The energy equation i s  therefore replaced by a simple a lgebra ic  equation, 

reducing the number o f  PDE's to be solved by one. I n  the case o f  viscous 

flows, the above statement i s  n o t  true. However, i t  i s  we l l  known t h a t  f o r  

the Prandt l  Number P r = l  and adiabat ic  walls, ?he total enthalpy w i l l  s t i l l  be 

constant. Many inves t i ga to rs  have appl ied le enthalpy damping accelerat ion 
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technique introduced by Jameson C51 and have e f f e c t i v e l y  dr iven the t o t a l  

enthalpy t o  zero a t  the r e s u l t i n g  (hopefu l ly )  steady state.  Several 

i n v e s t i g a t o r s  used t h i s  techique to p r e d i c t  very complex two- and three- 

dimensional con f igu ra t i ons  and reported r e s u l t s  t h a t  were i n  good agreement 

w i th  experimental data. Because o f  t h i s  experience, the present viscous 

formulat ion assumes t h a t  the t o t a l  enthalpy i s  constant even i n  the presence 

o f  na tu ra l  d i ss ipa t i on .  Due t o  the obvious l i m i t a t i o n s  o f  the present 

formulat ion,  on l y  the t h i n  shear layer form of the viscous terms was 

implemented. Here the viscous terms i n  the normal d i r e c t i o n  are assumed to be 

much l a r g e r  than those i n  the streamwise d i rec t i on ,  which i s  consequently 

neglected. The two-dimensional Navier-Stokes equations f o r  compressible f lows 

i n  vector form f o r  general , body f i t t e d  coordinates w r i t t e n  i n  nondimensional 

strong conservation law form using the t h i n  shear l a y e r  assumption are 

where 

[ 1 F = J  

- 
Gv - 

0 

ax - x5 %xy 
7 - x  0 

XY 5 Y 

Using the d e f i n i t i o n  o f  the speed o f  sound a t  stagnat ion condi t ions,  

= yRTo, the non-dimensional total enthalpy i s  
cO 

- hO 1 
h t - r = y - l  

0 
L 
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r e s u l t i n g  i n  the fo l l ow ing  form o f  the equation o f  s ta te  

p = e  (1 y-l (U* + v2))  ( 3 )  Y -2  

A1 1 va r iab les  are nondimensional i z e d  by the stagnat ion values ( f o r  d e t a i l  s, 

see Reference [lo]) : the primes denoting non-dimensional quanti  t i e s  are 

dropped f o r  convenience. The viscous terms are shown a f t e r  the app l i ca t i on  of 

the Stokes hypothesis f o r  bulk v iscos i ty .  I n  the above equations, p i s  

density, u and v are the car tesfan v e l o c i t y  components and p i s  s t a t i c  

pressure. The viscous terms included i n  G, w i l l  be discussed l a t e r .  The 

me t r i c  c o e f f i c i e n t s  o f  the transformation o f  coordinates are def ined as 

I = -J YE s Ex = J YI) 

where J i s  the Jacobian o f  the t ransformat ion 

and U and U are the con t rava r ian t  v e l o c i t i e s  s I) 

u = uqx + VT$ u, = us, + 'Cy 11 

The equiva lent  i n v i s c i d  Euler equations are obtained from Eq. (1) by 

The development o f  the s o l u t i o n  algor i thms f o r  the Euler  s e t t i n g  Gv = 0. 

equations fo l l ows  below. 

111. Development o f  I n v i s c i d  Algor i thm 

An i m p l i c i t  Euler s ing le  s tep  temporal scheme was selected f o r  advancing 

the s o l u t i o n  o f  Eq. (1) i n  time. After l i n e a r i z a t i o n  i n  time using the Taylor 
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se r ies  expansions o f  the f l u x  vectors F and G, and approximate f a c t o r i z a t i o n  

of the i m p l i c i t  operator ( d e t a i l s  are given i n  Reference [3]), the bas ic  

a lgo r i t hm has the form 

where A and B are the Jacobian matr ices 

The Jacobian matr ices A and B are given i n  d e t a i l  i n  Reference [lo]. The 

special d i s c r e t i z a t i o n  o f  Eq. ( 7 )  can be c a r r i e d  o u t  i n  many d i f f e r e n t  ways. 

I n  the present method, the f l u x  vector s p l i t t i n g  approach appl ied t o  c e l l  

centered f i n i t e  volume f o r d u l a t i o n  was selected. The main reason was i t s  

super ior  a b i l i t y  to capture r e l a t i v e l y  strong shocks w i t h i n  a t  most two zones. 

It can be also shown t h a t  i t s  t runcat ion e r r o r  provides the minimum necessary 

damping to l i m i t  spurious o s c i l l a t i o n s  i n  the weak so lu t i ons  t o  the Euler 

equations. Based on our previous experience reported i n  Ref. [ l o ]  as we l l  as 

r e s u l t s  presented to Ref. [8], i t  was decided t o  use the f l u x  vector s p l i t t i n g  

introduced by van Leer [13] coupled w i th  the so-cal led MUSCL type 

d i f f e renc ing .  The van Leer s p l i t t i n g  was selected because the s p l i t  f l u x  

vectors are smooth and have smooth f i r s t  de r i va t i ves  w i t h  respect to the Mach 

number, so t h a t  t h e i r  eigenvalues are a l s o  smooth. 

The i n v i s c i d  f l u x  vectors F and G each have a complete s e t  o f  three r e a l  

e igenvectors and can be therefore s p l i t  i n t o  two vectors, one w i t h  non- 

negative eigenvectors and one w i t h  non-posi t ive eigenvectors. Fol lowing 

Reference C131, these are 
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+ + + T  
where, f o r  example, F+ = (Fls F2. F3) . 
Cartesian coordinates (denoted here by A )  

I n  more detai led,  they are i n  

*+ *+ 
F3 = v F1 

*- A- 

Fj = v F1 

w i t h  

*+ *+ G2 = u G1 

y+l  *+ 
c*sy y G1 i; = 

*- A- 

G2 = u G1 

*, y+l A- 

G3 = - c*,y y G1 

S Y  
2 28 - 1 " 2 ] ,  M*sy = V/C, C*.Y =wj3 7 

The above s p l i t  f luxes ? and have, by d e f i n i t i o n ,  one zero 

eigenvalue and two p o s i t i v e  eigenvalues; s i m i l a r l y ,  the f l uxes  ? and E- 
have one zero and two negative eigenvalues; these are i n  the case o f  F: 



+ xg. = 0 

I 

I where c, and M, are  e i t h e r  c * , ~  and M*,x o r  c + , ~  and M+,y. 

These s p l i t  f l uxes  are, unfortunately,  formulated i n  Cartesian 

coordinates only. They have t o  be transformed i n t o  general coordinates e 
and q, which i s  accomplished by simply r o t a t i n g  the l o c a l  coordinates a t  a 

given p o i n t  i n  the f l o w f i e l d  t o  a d i r e c t i o n  p a r a l l e l  w i t h  one o f  the cova r ian t  

vectors and q. This procedure i s  described i n  some d e t a i l  i n  Reference 
+ 

[ 8 ] ;  the resul  t i n g  t ransformat ion i s  

A I 
-1 'F+ F+ = T, 
4 

where 
A 

F' = i+ (0, (13) 

and = I  0 Y .. x.- 1 

The new dependent va r iab le  vector 0 i s  obtained from Q by rep lac ing  the 
- 

Cartesian v e l o c i t y  components u and v by the physical  v e l o c i t y  components u 

and i n  the covar iant  d i r e c t i o n  t .  These are, respec t i ve l y  



8 

Knowing the eigenvalues o f  the s p l i t  f luxes, i t  i s  now obvious t h a t  i n  

the special  d i f ferences i n  Eq. ( 7 )  F+ and G+ have t o  be backward d i f ferenced 

and F- and G- have to be forward differenced. This i s  accomplished by the 

I a p p l i c a t i o n  o f  the MUSCL type differencing, described i n  more d e t a i l  i n  

I References [lo, 81. Here, instead o f  using the t r a d i t i o n a l  backward o r  

I forward f i n i t e  dif ferences operat ing on F+, G+, F- and G’, the dependent 

I var iab les Q, which are b e t t e r  d i f f e r e n t i a b l e  than the f l u x  vectors, a re  

~ ex t rapolated to  the c e l l  faces i n  p o s i t i v e  or  negative d i rec t i on ,  depending on 

the sign o f  the eigenvalues. 

I 

The RHS o f  Eq. ( 7 )  becomes 

I 
where, for  example, 

+ 
Fi+1/2, t = F + ( Q ~ +  

and 

etc. , w i t h  s i m i l a r  expressions i n  the j -d i rec t i on .  

The parameter ks  switches between f i r s t  order formulat ion ( ks  = 0) and 

second order formulat ion (ks = 1). 

The present formulation, when appl ied to t ransonic and low supersonic 
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flows, d i d  not require the use of f l u x  l imi te rs  for essent ia l ly  osc i l l a t ion  

free shocks. T h i s  was noticed by Anderson, Thomas and van Leer C81 and von 

Lavante and Haertl [ lo ]  and was explained i n  more detai l  by van Leer C141. 

The  favorable behavour of the present formulation is  due to  the f a c t  t ha t  a t  

transonic speeds, the backward r u n n i n g  charac te r i s t ic  variable tha t  is  b e i n g  

extrapolated from downstream of the shock i s  much smaller than the forward 

r u n n i n g  charac te r i s t ic  variable. Despite the above 1 inear extrapolation, no 

o r  very small overshoots were encountered. 

The implicit l e f t  hand side of Eq. (7) underwent similar modifications a s  

the r i g h t  hand side. The Jacobian matrices A and B were replaced by the 

corresponding Jacobians of the sp l i t  flux vectors, y i e l d i n g  following form of 

the l e f t  hand side of Eq. ( 7 ) .  

a r e  f i r s t  a,: - 
where A+ = a F+ A - = p  aF- B + =r aF+ B- = $ and 3; and 

order backward and forward differences, respectively. The exact form of these 

Jacobian matrices will be given i n  the fu l l  paper. A standard block 

tridiagonal solver was used to  solve t h e  system of algebraic equations g i v e n  

by Eq. ( 1 5 ) .  

An acceleration of the convergence to  steady s t a t e  conditions was 

achieved by the use of local time steps. In this procedure, the time step . 

used i n  each o f  the c e l l s  was determined from the maximum local eigenvalue 

a f t e r  each i te ra t ion .  The two-factor, block tridiagonal form of the resulting 

algorithm, given by Eqs. (15) and ( 1 4 )  i s  re la t ive ly  easy to vectorire. 

The  Eq. (7) is not the only possible Euler implici t  form. The  

factor izat ion of the l e f t  hand side can be carr ied out  i n  many d i f f e ren t  ways. 
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One a l t e r n a t i v e  f a c t o r i z a t i o n  t h a t  seemed t o  y i e l d  more e f f i c i e n t  method f o r  

execut ion on scalar computers i s  a four-factor form 

(16) b +  b +  [I + a5 A 1 [I + a i  A - I C 1  + a,, B I [I + a: B-1 hQn = Rn 

This  form o f  the i m p l i c i t  operator r e s u l t s  i n  block-bidiagonal L-U 

systems o f  equations t h a t  can be solved very e f f i c i e n t l y ,  each o f  them i n  one 

sweep. The i m p l i c i t  operator based on Eq. (16) was therefore a l s o  'tested i n  

the present i nves t i ga t i on .  The d i rec t i ons  of sweep were permutated i n  order 

t o  preserve the symmetry o f  the algorithm. However, the L-U scheme was on ly  

marg ina l ly  b e t t e r  than the block-tr id iagonal  scheme, since i t s  maximum s tab le  

CFL number was lower, probabi ly due t o  i t s  l a r g e r  s p l i t t i n g  e r ro r .  A t ten t i on  

was therefore focused on the scheme based on Eq. (151, since, i n  a d d i t i o n  t o  

being s l i g h t l y  more e f f i c i e n t ,  i t  a l s o  makes the i n c l u s i o n  o f  cen t ra l  

d i f f e rence  viscous terms much eas ie r  than the L-U scheme. 

I V .  Development o f  Viscous A lgo r i  thm 

The s i m p l i c i t y  o f  the present viscous scheme i s ' s t r i k i n g .  Th is  i s  mainly 

due to the assumption o f  constant t o t a l  enthalpy and a p p l i c a t i o n  o f  the t h i n  

shear l a y e r  form o f  the Navier-Stokes equations. Equation (10) already 

i nd i ca ted  t h a t  only two l i n e s  have t o  be added to the f l u x  vector G, i n  

a d d i t i o n  t o  the necessary changes i n  the i m p l i c i t  operator. 

A f t e r  some simple manipulations, Gv can be r e w r i t t e n  as 

P 0 I 
2 

= p J  - ( 4 y 2 - x ) u  3 2  E 5 3 5 5 5 1  + ' x  y v GV 

l x  y u 3 5 c: 
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It should be noted t h a t  i n  t h i s  case t h i s  i s  exac t l y  the same form as 

obtained by Swanson and Turkel [12]  a f t e r  evaluat ing the f i r s t  order 

d e r i v a t i v e s  i n  the viscous terms using Green's theorem and then using 

f o l l o w i n g  center d i f f e rence  d i s c r e t i z a t i o n  a t  the c e l l  face a t  j+1/2: 

" X  i,j - 'i-l,j; 

- v =  7 'i,j+l 'i,j 

2 

'Ji , j+l i,j 
+ 1/J J 

(18) 

I n  the case o f  the i m p l i c i t  part ,  the f u l l  viscous f l u x  Jacobian matr ix  

i s  r e l a t i v e l y  complicated and t i m e  consuming t o  evaluate. However, the basic 

under ly ing assumption o f  the v a l i d i t y  o f  the present method was t h a t  on ly  

steady s t a t e  r e s u l t s  were required. From the de l ta  form o f  the governing 

equations, given i n  Eqs. (17), (15) and (161, i t  i s  obvious t h a t  i f  the method 

converges t o  steady state, the steady s ta te  r e s u l t s  w i l l  n o t  be e f f e c t e d  by 

the i m p l i c i t  operator. The d i ss ipa t i ve  p a r t  o f  the i m p l i c i t  operator can be 

therefore s imp l i f i ed ,  as long as the s t a b i l i t y  l i m i t s  o f  the scheme are n o t  

reduced. 

I t  has been shown previously (References C15, 161 t h a t  the i m p l i c i t  p a r t  

o f  the Navier-Stokes solver (15) w i t h  (17) can be s i g n i f i c a n t l y  simp1 i f i e d  by 

s u b s t i t u t i n g  the c o r r e c t  Jacobian matr ix o f  the viscous f l u x  by a diagonal 

ma t r i x  Iv ,  where I i s  the u n i t y  matr ix  and v i s  the maximum diagonal 

component o f  the matr ix  M t h a t  i s  obtained from the t h i n  shear l a y e r  Navier- 

Stokes 6 luat ions i n  the fo l l ow ing  de l ta  form 
I '  
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I 

I (19) 

I 
~ 

The f i n a l  form o f  the present viscous scheme i s  given by 

(20)  b +  b +  [I + ag A + a; A - I  [I + all 8 + af B- + a IV all] A Q ~  = Rn ll r) 

i n  order to account for  +. + 
where, for  example, Gi , j+1/2 + j+1/2 + Gv;i , j+1/2 

I 
I 
I 

I the viscous e f f e c t s  i n  the e x p l i c i t  p a r t  Rn. The viscous terms are c e n t r a l l y  

I d i f f e renced  i n  both the e x p l i c i t  and i m p l i c i t  p a r t s  o f  Eq. (20). 

V. M u l t i g r i d  

The F u l l  Approximation Storage (FAS) m u l t i g r i d  scheme (Ref. [11) must be 

used since the s e t  o f  equations are nonl inear.  A development o f  the FAS 

scheme i s  given below. Consider the problem 

Lh ,h = fh  ( 2 1 )  
where Lh i s  a nonl inear operator on a gr id ,  Gh, w i t h  spacing h. The fo rc ing  

funct ion,  f i s  known and Uh i s  the so lut ion to the problem on the g r i d  w i t h  

spacing h. I f  we take uh as an approxfmation t o  Uh w i t h  an e r r o r  o f  

V h =  U h -  u h 3 

Eq. (21) can be w r i t t e n  as 

h h  L u i s  subtracted from both sides o f  (18) give: 

I f  the terms are smooth, ther can be represented on a coarser gr id ,  GZh. 

The g r i d  GZh ' : formed by de le t i ng  every other  p o i n t  i n  w i t h  spacing 2h. 
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Gh. Therefore, G Z h  Gh. Points are eliminated from G Z h  to form G 4 h  and so 

for th  to form G8h, G16h, e tc .  Written on the coarse g r i d  G2h ,  Eq. ( 2 3 )  

becomes 

h h  2h ( f h  - L u L2h (12,h uh + VZh)  - LZh ( I h  2h u h ) = In 

or 

where 
f 2 h  = I2h ( f h  - L h h  u ) + L Z h  ( I t h  u h )  

n 

and I f h  i s  the res t r ic t ion  operator. 

Since Eq. ( 2 5 )  i s  on a coarser gr id  than Eq. (221 ,  the numerical solution 

for uZh i s  much cheaper to obtain because fewer points a r e  involved. Note t ha t  

the operator used on the coarse g r i d  has the same form as the f ine g r i d  

operator, the g r i d  spacing ( h  and 2h) being  the only difference.  Once the 

values o f  u2h a r e  obtained, the fine gr id  i t e r a t i v e  solut ion is updated u s i n g  

the following equation: 

h where I2h i s  the prolongation operator. 

T h e  r e s t r i c t ion  operator has two forms. One form i s  used to r e s t r i c t  the 

dependent variables,  L I h  ( u h ) ;  i.e. the f low quant i t ies  p, pu, and pv. 

For these, the volume weighted average of the values of the function a t  

midcells of the four f ine g r i d  c e l l s  contained i n  a course g r i d  ce l l  a re  used 

to set the value o f  the coarse g r id  (See Fig .  1). The other form of the 

r e s t r i c t i o n  operator is for the res t r ic t ion  of residuals,  1;’ ELh ( u h ) l .  A 

i 
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simple summation o f  the res iduals  over the four  f i n e  g r i d  c e l l s  composing the 
I 

I coarse g r i d  c e l l  i s  performed. 

~ The r e s t r i c t i o n  operations are performed f o r  a l l  i n t e r i o r  po in ts  o f  the 

I f low f i e l d .  A t  the outer boundaries, on ly  the values o f  the funct ions a re  
I 

I 
r e s t r i c t e d ,  w i t h  no residual  r e s t r i c t i o n .  These values are frozen t o  the f i n e  

g r i d  values and are n o t  updated on the coarse g r ids  since a l i f t - c o r r e c t i o n  

I scheme i s  used t o  s e t  the outer-boundary values on the f i n e  gr id.  The l i f t -  
~ 

co r rec t i on  scheme was found t o  be l e s s  accurate on the coarse g r i d s  and tended 

~ t o  slow the convergence. A t  the a i r f o i l  surface, the values are n o t  frozen 

and the same boundary condi t ion was used f o r  a l l  the gr ids.  A t  the wake cut, 

f l ow  values a t  ghost po ints  were s e t  equal t o  the f low values from the proper 
I 
I 

po in t s  across the wake on a l l  the grids. 

The prolongat ion operat ion used i n  the c u r r e n t  work i s  a b i l i n e a r  

i n t e r p o l a t i o n  i n  the computation space o f  the correct ions a t  the four  coarse 

g r i d  c e l l s  adjacent t o  the f i n e  g r i d  midcel l  (see Figure 2). Volume weight ing 

i s  n o t  used. 

As a f i r s t  cut, a f i x e d  V-cycle w i t h  fou r  g r i d s  was used; a f i n e  g r i d  

w i t h  209x33 c e l l s  and three coarse g r ids  w i t h  105x17, 53x9 and 27x5 c e l l s ,  

respect ive ly .  The program was constructed to a l low the number o f  i t e r a t i o n s  

on each g r i d  between r e s t r i c t i o n s  and pro longat ion t o  be c o n t r o l l e d  by input.  

E i t h e r  f i r s t - o r d e r  (ks=O) o r  second-order (ks=l) approximations can be used, 

i n  any combination, on each o f  the grids. Local time stepping was employed on 

each g r i d  w i t h  a s ing le  reference CFL number c o n t r o l l i n g  a l l  gr ids.  

Before discussing- mu1 t i g r i d  resul ts ,  i t  i s  necessary t o  define work 

un i t s .  Conceptually, a work u n i t  i s  the amount o f  work requ i red  t o  perform 

one f i n e  g r i d  (Gh) i t e r a t i o n .  I t  fol lows t h a t  the work requ i red  t o  perform an 
I 



i t e r a t i o n  on the g r i d  G2h i s  1/4 f o r  two-dimensional problems. For g r i d  G4h 

the work per i t e r a t i o n  i s  1/16 and f o r  g r i d  G8h the work i s  1/64. To be 

honest, the work requi red t o  r e s t r i c t  from one g r i d  t o  the nex t  must be 

included since a res idual  c a l c u l a t i o n  i s  necessary on both the f ine and course 

grids. On the conservative side, t h i s  can be estimated as the sum o f  the work 

t o  perform a f i n e  g r i d  i t e r a t i o n  and a coarse g r i d  i t e r a c t i o n ,  1.25 f o r  the 

r e s t r i c t i o n  from Gh to  G2h. (The inc lus ion  o f  the work requ i red  f o r  .the g r i d  

t r a n s f e r  i s  l e s s  important if the residual  c a l c u l a t i o n  i s  a small p a r t  of the 

update ca lcu lat ion,  such as f o r  h igh ly  i m p l i c i t  schemes. It i s  more impor tant  

f o r  expl i c i  t schemes.) The work w r i t e s  f o r  the present m u l t i g r i d  

computations, expressed as m u l t i p l e s  o f  the s ing le ( f i n e )  g r i d  i t e r a t i o n ,  are 

therefore obtained from 

where nh...n8h are the number o f  i t e r a t i o n s  on each gr id .  The work u n i t  count 

was increased i n  the case o f  addi t ional  i t e r a t i o n s  dur ing the prolongat ion 

process. A more precise accounting f o r  the g r i d  t r a n s f e r s  would i nvo l ve  

t iming the t r a n s f e r  and then ca l cu la t i ng  the work requ i red  based on the time 

required. I n  the present study, the conservative method o f  adding the work 

requ i red  t o  perform f i n e  and a coarse g r i d  i t e r a t i o n  i s  used. This  produces 

work which i s  h igh by about 15%. 

V I .  Results 

The present method was f i r s t  tested i n  the s ing le g r i d  version on several 

t ransonic f l ow  conf igurat ions t h a t  included i n t e r n a l  as we l l  as external  

cases. Only the more i n t e r e s t i n g  t e s t  cases w i l l  be shown here. 

I n v i s c i d  r e s u l t s  - The performance o f  the i n v i s c i d  (Euler )  scheme can be 
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demonstrated on the several standard transonic a i r f o i l  t e s t  cases. 

I n  the present work, the NACA 0012 a i r f o i l  a t  var ious Mach numbers and 

angles o f  a t tack  was selected. The f l o w  was predic ted using a 201x31 C-grid 

t h a t  was generated using e l l i p t j c  g r i d  generation. There were 141 po in ts  on 

the a i r f o i l  . Fol lowing three f low condi t ions are f requent ly  encountered i n  

l i t e r a t u r e  and w i l l  be therefore discussed here: 

a )  M,,, = 0.8, a (angle o f  a t tack)  = 0 - t h i s  s u p e r c r i t i c a l  case i s  

p a r t i c u l a r l y  we l l  su i ted  to t e s t  the a b i l i t y  o f  a numerical method t o  perserve 

the symmetry of the flow. The l i f t  c o e f f i c i e n t  C 1  should be zero, whi le  the 

drag c o e f f i c i e n t  Cd w i l l  be nonzero due t o  the shock. The present method 

predic ted the C1 to be 1.41x10'*, a value t h a t  i s  c e r t a i n l y  acceptably c lose 

t o  zero. The drag correspond to cd = 0.0087, which i s  i n  very good r e s u l t i n g  

Mach number and pressure contours are shown i n  Fig. 3. The shocks were 

captured w i t h i n  a t  most two zones and are very cr isp;  the Mach contours are 

very smooth i n d i c a t i n g  the absence o f  spurious o s c i l l a t i o n s .  The convergence 

h i s t o r y  i s  shown i n  Fig. 4 f o r  the optimum CFL number o f  27.5. A t  t h i s  CFL 

was approximately 0.969, number, the spectral  rad ius o f  the convergence 

which i s  low for a s ing le g r i d  calculat ion.  The res idua ls  shown i n  Fig. 4 a r e  

the L-2 norm o f  the densi ty residual  (marked w i t h  crosses) and the maximum 

pSP 

res idual  o f  the density. The correct  number o f  supersonic p o i n t s  was reached 

a f t e r  on l y  100 i t e r a t i o n s  (F ig  4). 

b) MaD = 0.8, a = 1.2S0 - another s u p e r c r i t i c a l  case; i t  i s  wel l  s u i t e d  

f o r  t e s t i n g  the performance o f  the boundary condit ions, since the l i f t  i s  very 

s e n s i t i v e  to t h e i r  inf luence. The r e s u l t s  obtained from the present method 

were C 1  = 0.3617 and cd = 0.0233. These r e s u l t s  are i n  good agreement wi th  

data publ ished i n  Reference [17]. The range o f  best  r e s u l t s  was given as Cl = 
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0.3632 - 0.3661 and cd = 0.0229 - 0.0230, achieved on g r i d s  t h a t  extended up 

t o  96 cords from the a i r f o i l ! !  The comparison w i t h  r e s u l t s  publ ished by 

Anderson e t  a l .  was a l so  favorable; they reported C1 = 0.363 and cd = 0.0234, 

The corresponding Mach numbe and pressure contours are shown i n  Fig. 5. The 

shock on the upper surface was again very wel l  captured. The convergence 

h i s t o r y  f o r  t h i s  case i s  presented I n  Fig. 6. Although n o t  as good as i n  the 

a = 0 case, the spectral  rad ius  was s t i l l  a reasonable p = 0.975 a t  the 

optimum CFL number o f  21. The co r rec t  number o f  supersonic po in ts  was 

obtained a f t e r  189 i t e r a t i o n s .  

SP 

c )  M- = 0.63, a = 2O - t h i s  case i s  s u b c r i t i c a l .  Here, the main 

d i f f i c u l t y  l i e s ,  besides the c o r r e c t  l i f t  predict ion,  i n  the drag ca lcu lat ion.  

I n  the absence o f  shocks, the cd should be zero. The present scheme computed 

C1 = 0.3302 and cd = 0.0006. Both values are i n  reasonable agreement w i t h  

r e s u l t s  repor ted by Anderson, Thomas and van Leer C81, given as C 1  = 0.332 and 

cd = 0.0006. The Mach number and pressure contours can be seen i n  Fig. 7. 

The res idua l  h i s t o r y  i n  Fig. 8 i s  somewhat surpr is ing.  Although the Mach 

number i s  lower than i n  the previous cases, the r a t e  o f  convergence i s  by f a r  

the best. Th is  i s  r e f l e c t e d  i n  the value o f  the spectral  rad ius  

= 0.964, obtained a t  an optimum CFL number o f  18. The f low i s  
pSP 

s u b c r i t i c a l  w i t h  no supersonic points. 

Viscous r e s u l t s  - The present s imp l i f i ed  viscous a lgo r i t hm was tested on 

several conf igurat ions.  The consistancy of the method was f i r s t  i nves t i ga ted  

by g r i d  ref inement study done on compressible subsonic and supersonic boundary 

l a y e r  f l o w  on a f l a t  p late.  The freestream Mach number was 0.5 and the 

reference Reynolds number was Reo = 5,000. The computations were c a r r i e d  o u t  

on three gr ids:  51x51, 51x76 and 51x101 t h a t  were exponent ia l ly  stretched i n  

the d i r e c t i o n  normal t o  the plate.  The g r i d  was r e f i n e d  i n  the d i r e c t i o n  
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normal t o  the p la te.  The r e s u l t s  w i l l  be presented i n  the f u l l  version o f  the 

paper; they can be summarized by s ta t i ng  t h a t  the sk in  f r i c t i o n  coe f f i c i en ts  

as we l l  as the v e l o c i t y  p r o f i l e s  consis tant ly  improved as the g r i d  was r e f i n e d  

and agreed c lose ly  w i t h  the Blasius solut ion. 

The viscous method was subseqently tested on a supersonic d i f f u s o r  

c o n f i g u r a t i o n  wi th  i n f l o w  Mach number M=2.0 and upper wal l  compression corner 

t h a t  generated on obl ique shock. The shock was r e f l e c t e d  o f f  the lower wa l l  

a t  a Reynolds number Rex = 3 l o 5  based on the l eng th  along the lower wal l  , and 

was s t rong enough to cause separation o f  the boundary layer .  The configura- 

t i o n  i s  s i m i l a r  to t h t  used by Thomas and Walters [ZO]. Computations using 

the present method were done on two grids: 51x51 (coarse) and 51x10 ( f i n e r ) .  

The r e s u l t i n g  r a t i o  o f  s t a t i c  pressure to t o t a l  pressure as wel l  as sk in  

f r i c t i o n  c o e f f i c i e n t  Cf a t  the lower are shown i n  Fig. 9 as compared w i t h  

experimental data given by Hakkinen e t  a l .  C191. It can be seen t h a t  the 

coarse g r i d  had i n s u f f i c i e n t  reso lu t i on  to c o r r e c t l y  p r e d i c t  the extend o f  the 

separated zone and the formation o f  the pressure plateau t y p i c a l  f o r  lambda 

shock s t ructure.  Ref in ing the g r i d  resul ted i n  much b e t t e r  p r e d i c t i o n  o f  the 

pressure and Cf; except f o r  the reattachment region, the agreement w i t h  

experimental r e s u l t s  i s  q u i t e  good. This tendency i s  cons i s tan t  w i t h  r e s u l t s  

given i n  Ref. [20]; minor dif ferences i n  the pressure p r o f i l e  can be explained 

by the presence o f  the upper wa l l  i n  present conf igurat ion.  The r a t e  o f  

convergence, given i n  Fig. 10, was r a t h e r  high. A t  an maximum l o c a l  CFL 

number o f  1450 (g lobal  time steps were used i n  t h i s  case) the maximum res idual  

was reduced e i g h t  orders o f  magnitude w i t h i n  500 i t e r a t i o n s .  

More recent ly ,  r e s u l t s  were obtained f o r  laminar f lows over t ransonic 

a i r f o i l  NACA 0012, showlr, separated f low near the t r a i l i n g  edge. These w i l l  

be inc luded i n  the f u l l  VI *sion o f  t h i s  paper. 
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M u l t i g r i d  - A l l  the m u l t i g r i d  computations were c a r r i e d  o u t  on a 32 b i t  

computer, as compared t o  the s ing le g r i d  cases shows above, which were 

executed on a 60 b i t  machine. To show the accelerat ion o f  

scheme, r e s u l t s  f o r  the t e s t  case of a NACA0012 a t  M- = . 80, 

presented. I n  Figure 11, i s  the convergence h i s t o r y  of a 

mu1 t i g r i d  c a l c u l a t i o n  a t  optimum CFL number. This  c a l c u l a t i o n  

the mu1 t i g r i d  

a = 1.25 are 

baseline, no 

was performed 

on a 201x31 c e l l  gr id, somewhat coarser than the 209x33 c e l l  g r i d  used f o r  the 

mu1 t i g r i d  ca lcu lat ions.  One hundred and s i x t y - f i v e  i t e r a t i o n s  were requi red 

to converge the l i f t c o e f f i c i e n t  t o  within 1% o f  the converged s o l u t i o n  and 

over 250 i t e r a t i o n s  were requi red t o  reduce the maximum res idua l  three orders 

o f  magnitude. (see case 1, Table 2). F igu re  3 shows the l oga r i t hm of the 

maximum res idua l  d iv ided by the i n i t i a l  res idual ,  the l i f t  c o e f f i c i e n t ,  and 

the number of supersonic po ints  are p l o t t e d  versus number o f  i t e r a t i o n s .  

The base1 i n e  c a l c u l a t i o n  was then accelerated using mu1 t i g r i d  w i t h  fou r  

g r i ds  i n  a V-cycle. As a f i r s t  cut, two i t e r a t i o n s  were performed on each o f  

the g r i d s  f o r  40 cycles. The convergence h i s t o r y  o f  t h i s  case (case 2 o f  

Table 10 i s  shown i n  Figure 12. The l i f t  converged ( w i t h i n  1%) i n  107 work 

un i ts .  I n  case 3, more i t e r a t i o n s  were performed on the coarser g r i ds  and the 

l i f t was obtained i n  88 work un i ts .  The res idual  a l so  converged more q u i c k l y  

(Figure 13). 

Other researchers have successful ly used mu1 t i g r i d  w i t h o u t  performing 

i t e r a c t i o n s  between the prolongat ion operat ions (Ref. 5, 8 ) .  This  was t r i e d  

i n  case 4 (Figure 14) and was found to reduce the time needed t o  achieve the 

l i f t  c o e f f i c i e n t  (83 work u n i t s )  but  produced a slower reduct ion of the 

maximum res idual .  

Since the computer program used i n  the presen work a l lows a choice 



20 

b tween f i r s t  and second-order d i f ferenc ing,  a scheme w i t h  second-order 

d i f f e renc ing  on the f i n e  g r i d  and f i r s t - o r d e r  d i f f e r e n c i n g  on the coarse g r ids  

was t r i ed .  It was hoped the f i r s t - o r d e r  d i f f e r e n c i n g  would provide b e t t e r  

smoothing on the coarse gr ids.  This  was n o t  the case. (See F igure 1 5 ) .  The 

l i f t  requi red 105 work u n i t s  t o  achieve a l e v e l  w i t h i n  1% o f  the converged 

answer . 
It should be noted t h a t  same i n v e s t i g a t i o n  (Ref. 17)  def ine work u n i t s  

simply as cycles. Using t h i s  d e f i n i t i o n  o f  convergence and accelerat ion,  the 

present method converged i n  9-30 cycles, s t a r t i n g  from uni form flow. This  

corresponds t o  an accelerat ion r a t i o  o f  10-12. 

To date, the optimum V-cycle FAS m u l t i g r i d  s t ra tegy found w i t h  t h i s  

method o f  so l v ing  the 2-D i s e n t h a l p i c  Euler equations i s  t o  use second-order 

d i f f e r e n c i n g  o r  a l l  the g r i d s  and t o  perform more i t e r a t i o n s  on the coarser 

g r i ds  than on the f i n e  gr id .  To most q u i c k l y  obta in  the l i f t ,  no i t e r a t i o n s  

should be performed between prolongations. It was found t h a t  the optimum CFL 

number w i t h  the m u l t i g r i d  acce le ra t i on  was close to the optfmum fo r  the s i n g l e  

g r i d  ca l  cu l  a t ion.  

The present scheme was also used to p r e d i c t  f lows about o ther  AGARD 

a i r f o i l  conf igurat ions a t  f o l l o w i n g  condi t ion:  M Q) = 0.85, a = lo; 

M aD = 1.2, a = Oo and M- = 1.2, a = lo. The f u l l  version o f  t h i s  paper w i l l  

a l s o  inc lude a study of i n v i s c i d  %parat ion on a backward fac ing  step, c a r r i e d  

o u t  w i t h  the present scheme. 

The present a lgor i thm i s  a w e n t l y  being extended t o  three dimensions. 

Some three-dimensional r e s u l t s  ~$7 be a l s o  included i n  t h i s  paper. 

! 



Future Work 

The acce le ra t i on  obtained by increasing the number o f  i t e r a t i o n s  on the 

coarse g r i d s  suggested t h a t  a W-cycle may y i e l d  b e n e f i t s  over the V-cycle 

c u r r e n t l y  used. This w i l l  be investigated. To date, a simple reference CFL 

number from g r i d  to g r i d  should be explored. 
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Fig. 4 -. convergenoe history and n u b r  of sqersonic points for MlCA 0012 
airfoil at Me= 0.8, zero angle of attack. 
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Fig. 6 - 
, 
1 

Convwqence history and nunher of supersonic points for NACA 0012 
airfoil  a t  Mm= 0.8, angle of attack = 1.Z0. 



31 

a) Mach nunber contours 

1 b) Pressure contours 

Fig. 7 - BQch n m h r  and pressure ContoUTs for NACA 0012 a i r fo i l  
at M-= 0.63, angle of at tack  = 2.0°. 
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fig. 8 - history for NACA 0012 airfoil a t  M,= 0.63, 
angh of attack = 2O. 
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a) Coarse grid (51x51) 
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Fig. 9 - &sults for Viscous diffusor calculations. Skin friction coefficient 
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